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The properties of a linear differential equation with an additive quadratic noise 
are analyzed. The graphs of the probability distribution of the process are 
presented for various values of the noise strength and the damping constant. 
The time evolution of the distribution is also shown. An infinitesimal generator 
of the evolution operator of the process is constructed. A diffusion-type 
approximation is considered and a comparison of the exact solution with the 
approximate solution is carried out. 

KEY WORDS: Stochastic equations; nonlinear noise; master equations; 
exactly solved model. 

1. I N T R O D U C T I O N  

Stochastic differential equations are a powerful tool in the study of 
dynamics of systems subjected to the action of random perturbations. An 
evolution equation with random parameters defines a certain stochastic 
process x, and the main problem is to find the probability density P(x, t) of 
x t with given initial conditions. In many cases the equation that governs 
the time evolution of the probability density is required. This leads to the 
concept of a master equation and, as a further consequence, to the deter- 
mination of an infinitesimal generator of the evolution operator. If the 
evolution equation with random parameters is considered and the charac- 
teristics of random parameters are known, then, generally speaking, we 
know almost nothing about the process under consideration: P(x, t) 
and(or) the master equation or(and) the generator of the process are 
unknown. For this purpose various approximation techniques have been 
proposed. On the other hand, it is worthwhile to study stochastic equations 
for which the whole dynamics is explicitly given. 
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In this paper we analyze a nontrivial model for which these problems 
can be solved from end to end. The model of interest is given by the linear 
differential equation 

2=cz  +b, z 6 R  l (1.1) 

with c < 0 and b a quadratic colored noise. Many processes in physical, 
chemical, and biological systems are described by Eq. (1.1). If c is fixed and 
b is a white noise or an Ornstein Uhlenbeck process (a Smoluchowski 
one), then P(z, t) can easily be obtained and has a Gaussian form. 
Equation (1.1) has been investigated for b = 0  and under the assumption 
that c has a white noise component (1) as well as that c has a nonstationary, 
colored noise component. ~2) A homogeneous linear equation with the non- 
linear multiplicative noise c has been considered by many authors. (3-7)'2 
Pomeau (8) considered Eq. (1.1) for fixed c and for b a linear dichotomic 
Markov process. The exact time-dependent distribution function for this 
problem was found by Sibani and van Kampen. (9) The relaxation of 
systems under the effect of a two-level Markovian noise was also 
investigated by Ishii and Kitahara. I~~ 

The rest of the paper is organized as follows. In Section 2, we analyze 
the main properties of the exact probability distribution P(z, t) for the 
process of interest obtained in a recent paper. (H) For special cases of the 
value of c, we give a suitable representation of P(z, t) desirable for 
numerical evaluation. From this representation we have obtained graphs of 
P(z, t) for different noise intensities and damping constants. Section 3 is 
devoted to the problem of a generator of the process. We present the 
integrodifferential equation with retardation satisfied by P(z, t) (Sec- 
tion 3.1) and the master equation (Section 3.2) obtained by the elimination 
of the noise variable from the joint distribution. We also show that the 
master equation can be written in the form of a Kramers-Moyal-type 
expansion with the determined coefficients. The master equation can be 
solved by the Fourier transform and the method of characteristics and, in 
fact, we obtain a second method for solving the starting problem. In Sec- 
tion 4, the Fokker-Planck (diffusion-type) approximation is analyzed and 
compared with the exact solution. It permits us to verify approximation 
methods that have been proposed. Auxiliary mathematical formulas are 
given in the appendices. 

2 In Ref. 7 we obtained the exact mean value of the process using two different methods. Our 

methods differ from those in Refs. 5 and 6. 
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2. PROPERTIES OF THE PROBABIL ITY  D I S T R I B U T I O N  

In a recent paper ~u) we obtained the compact formula for the dis- 
tribution P(z, t) of the process z, defined by the stochastic equation 

L = czt + #y2 (2.1) 

where y, is the colored noise 

( y , )  =0 ,  ( y , y ~ ) = ( y / ~ ) e x p ( - ~ l t - s { )  (2.2) 

and is generated by an Ornstein-Uhlenbeck process. The probability dis- 
tribution has the form 

i 
oo  

P(z, t) = (1/2~) de) e x p [ -  ie)(z - Zo ec') + (2~ - c)t /4] 
cO 

x {�89 Y v _ l ( f o ( t ) ) -  Y v + l ( f ~ ) J ~ _ l ( f ~ ( t ) ) ] }  1/2 

(2.3) 

where 

f o ( t )  = fo, exp(ct/2) (2.4) 

f co = ( 40~/C )( ~#e ) /~2 )  1/2 (2.5) 

go = ( i?#e)/c~2) 1/2 (2.6) 

v = 2~/c (2.7) 

In (2.3), Jv and Yv are the Bessel and Neumann functions, respectively. 
Note that Eq. (2.1) is invariant for a change of sign of both z, and #. 

Therefore we will consider only the case # > 0. The probability density for 
# < 0 can be obtained from the relation 

P(z, t; # ) =  P ( - z ,  t; - # )  (2.8) 

Without losing generality, we take # = 1 and for convenience we introduce 
a new parameter cr by the relation ~ 

27 = ( o ~ o )  2 (2.9) 

Then in Eqs. (2.5) and (2.6) 7#/c~2= 0"2/2 characterizes the noise strength 
and c~ characterizes the "color" of the noise Yt: if e--* oo, then yt tends to 
the white noise (y~ dt ~ o dW,).  
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In the relaxation case, c < 0 ,  the integrand in Eq. (2.3) can be 
expressed by elementary functions for the half-odd-integer order v and then 

c = 4 ~ / ( 1 - 2 n ) ,  n =  1,2,3 .... (2.10) 

In the complex plane of co, the integrand in (2.3) is a two-valued function 
and has singularities on the imaginary axis. If/z > 0, then all singularities lie 
on the negative part of the imaginary axis. For example, for the case 
c = -4~  and in the stationary limit (t ~ ~ )  singularities are at the points 

co,, = - i (2~2/aZ)(m + �89 (2.11) 

for an integer m. 
Let us choose the contour of integration so that it consists of the inter- 

val ( - ~ ,  + ~ )  of the real axis and the semicircle lying in the lower or 
upper half-plane. For z < Zo exp(ct), the integration has to be carried out 
around the contour in the upper half-plane where the integrand is 
holomorphic, so P(z, t) is zero. For z > Zo exp(ct) the integration has to be 
performed around the contour in the lower half-plane and P(z, t) is dif- 
ferent from zero. From above it follows that P(z, t) is proportional to the 
Heaviside function (~ > 0) 

P( z, t ) ~  O( z - z o exp(ct)) (2.12) 

and we can determine the domain of (z, t) where P(z, t ) =  0. An explicit 
evaluation of P(z, t) is impossible, so we have to carry out the numerical 
integration. Because the integrand in Eq. (2.3) is two-valued, we must 
specify the integration path and give a suitable representation of Eq. (2.3). 
It can be performed for the cases (2.10). 

2.1. The Case c =  - 4 a  ( v =  - 1 / 2 )  

In this case P(z, t) is given by Eq. (5.3) in Ref. 12 and its integral 
representation desirable for the numerical calculations reads 

P(z, t ) =  4f~-2(t) {.~o deJ (sech x/-~) '/2 
ira -----y-- Jo [A2(og, t) + B2(c.o, t)] 1/4 

[4~(Z-Zoe 4~,) ~o1(~o, 0 7 
x cos [_- -~-f~-~ 2 (2.13) J 
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where 
f~(t) = 1 - e  -2~t (2.14) 

Al(co, t )=  cos ~ + x/-~(tanh ~ cos x f l~ - s in  x/~)/(e 2='- 1) (2.15) 

B l(co, t) = tanh ~ sin 

+ , ,~ ( t anh  ~ cos ~ + sin x/-~)/(e 2~'- 1) (2.16) 

and the phase q01(co , t )  is determined from the following equation: 

tg ~ol(co, t )= Bl(co, t)/Al(co, t) (2.17) 

as an increasing function of co. In the stationary case, Eq. (2.17) has the 
simple form 

tg q)l(co) = tanh ~ tg ~ (2.18) 

The shape of the stationary distribution Pst(Z) was presented in Ref. 11. 
Here, Fig. 1 shows that time evolution of P(z, t) obtained from Eq. (2.13). 
The influence of the noise intensity a on the shape of P(z, t) is very similar 
to that presented for Pst(Z) in Ref. 11. The influence of the initial condition 
on the evolution of P(z, t) can be deduced from the relation (2.12). 

2.2. The Case e =  - 4 a / 3  ( v =  - 3 / 2 )  

In this case P(z, t) is transformed into 

P(z, t) - 4f25/2(t) ~o~ dco (2x/-~ sech x/~)  1/2 
9r~a ~ Oo [A2(co, t )+  B2(co, t)] 1/4 

where 

f2(t)  = 

A2(co, t ) =  

82(~o, t)= 

[4co(z -zoe  4=,/3) ~o2(co, t)] 
x cos L ~ 2 (2.19) ] 

F(t) = 

The phase ~o2(co , t) is determined from an equation analogous to (2.17). 
Results of numerical calculations are sketched in Figs. 2 and 3. 

1 -- e - 2~/3 (2.20) 

sin x/-~ + tanh v/-~ cos x/'~ + 2F(t) x / ~  cos x/-~ 

+ 2F2(t)co(tanh x /~  cos x / m - s i n  x/-~) (2.21) 

sin ~ - tanh ~ cos x /~  + 2F(t) ~ tanh ~ sin 

+ 2F2(t) (o(tanh ~ cos V/~ + sin x/-~) (2.22) 

1/(e 2~'/3 - 1) (2.23) 
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Fig. 1. 
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Graph showing the time development of P(z, t) for # = 1, c = -4c~, a 2 =  12, and (a) 
the initial density, (b) e t=0 .1 ,  (c) et =0.25, (d) c~t= 1. 

2.3. The Case c =  - 4 a / 5  ( v =  - 5 / 2 )  

In order to show the structure of the integrand in (2.3) for different 
values of the damping coefficient c (or v), we present one more case. The 
previous two cases refer to strong damping of the system, Icl > ~. The third 
case, c = -4e /5 ,  refers to weak damping, [c[ < c~. In this case we obtain 

P(z, t) 4f37/2(t ) ~o~ do) (40) ~ sech ~ ) 1 / 2  
25rta 2 Jo [A~(O), t)+B~(o), t ) ]  1/4 

F4O)(Z-- Zo e-4~t/5 ) (P3(O), l ) ]  
• c o s  L 2 (2.24) 

J 
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Fig. 2. Some selected examples of the stationary probability distribution Pst(z) for i f=  1, 
c = -4e /3 ,  and various values of the noise strength 0-: (a) 0 2= 5/9, (b) 0-2= 8/9, (c) 0 -2 =4/3. 

where 

f3(t) --- 1 - e - 2~'/5 (2.25) 

and ~p~(co, t) is determined as previously. Expressions for A3(m, t) and 
B3(~o, t) are given in Appendix A. 

From Eqs. (2.13), (2,19), and (2.24) one can infer the structure of the 
integrand (2.3) for the next values of v = - 7 / 2 ,  - 9 / 2  ..... In Fig. 4 we 
present the difference of the shape of Pst (Z)  for different values of the 
damping coefficient c. Because the dependence of P(z, t) on parameters 
c, ~, and a is smooth, from Figs. 1-4 one can construct a full picture of the 
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Fig. 3. 
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Plots of P(z, t) against z for/~= 1, c= -4c~/3, a2=4/3, and (a) at=0, (b) c~t =0.35, 
(c) c~t = 0.5, (d) at = 0,75, (e) at = 1. 

properties of the distr ibution probabil i ty P(z,  t). As a final (rather 
technical) remark,  let us ment ion that  the numerical  calculation has been 
carried out  by the Simpson method.  Because P(z,  t), given by Eqs. (2.13), 
(2.19), and (2.24), is expressed as the sine and cosine Fourier  transforms 
over a real, positive half-axis, we have verified our  results using a more  
subtle me thod  based on approximate  expressions for the Fourier  
transforms. (13) In the cases considered, both  methods  give results which 
coincide within errors of the same range. 
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Fig. 4. 
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Plots of Pst(z) versus z for r = 1, 0 -2 = 1, and various values of the damping parameter 
c: (a) c = - 4 e ,  (b) c = -4~/3,  (c) c = -4~/5.  

3. G E N E R A T O R  OF THE P R O C E S S  

E q u a t i o n  (2 .3)  d e f i n e s  t h e  t i m e  e v o l u t i o n  o p e r a t o r  U(t)  b y  t h e  r e l a t i o n  

P(z, t)= u(t) P(z, 0) (3.1) 

w i t h  t h e  C a u c h y  b o u n d a r y  c o n d i t i o n  

P(z ,  O) = 3(z  - Zo) (3 .2)  
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The abtract theory of evolution operators does not provide much infor- 
mation about the family of infinitesimal generators of these operators/~4~ 
Roughly speaking, the question about the generator L of U(t) is connected 
with the question about a functional (differential, integrodifferential, and so 
on) equation satisfied by the probability distribution P(z, t), (2.3). In other 
words, we would like to construct an evolution equation for P(z, t) in the 
form 

~-t P(z, t)= LP(z, t) (3.3) 

The right-hand side of (3.3) should precisely be written as (LP)(z, t). 

3.1. The Delay Integrodifferential  Equation 

Because Eq. (2.1) is a particular case of an equation studied by 
W6dkiewicz, (15) we can write the evolution equation, which, from 
mathematical point of view, is the introdifferential equation with bounded 
delay and has the form 

Ot - ~ z  cz+ P(z , t )+ K ( t - , ) P ( z , r ) d r  (3.4) 

where K(t) is the inverse Laplace transform of M(s), 

M(s) = dt e-S' K(t) 

and M(s) is the operator-continued fraction (15) 

(3.5) 

1 
M(s) = A 1 R 2 (3.6) 

s - Q2 - A R4 
1 

s - Q4 - A R 6 
s - Q 6 - A . . .  

A = kt ~ (3.7) 

where 

Qn = - ~  cz+#(2n+l )  -nc~ 

)7 2 0 
R , =  #n(n-1  -~7 ~z 

(3.8) 

(3.9) 

are the differential operators acting in the proper space of distributions. 
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Equation (3.4) is formal and useless for our aims: we are not able to 
determine explicitly the action of K(t) on P(z, t) and perform efficiently the 
approximate calculations. We will derive another form of the evolution 
equation using an elegant method based on the Martin-Rose-Siggia 
equations. (~6) 

3.2.  E l i m i n a t i o n  o f  t h e  N o i s e  V a r i a b l e  

Let us start from the Fokker Planck equation for the joint density 
p(z, y, t) of the diffusion process (z,, y,), 

a 
at p(z, y, t )= Y p ( z ,  y, t) (3.10) 

with the infinitesimal generator 

where, for convenience, 

and 

2 '  = -?,(cz + # f  ) + c~,r + y:O 2 (3.11) 

= O/az, f~ = a/Oy (3.12) 

p(z, y, O)= P(z, O)PI(Y) (3.13) 

is the initial density with (12) 

P1(Y) = (c(2~t7) I/2 e x p ( -  ~yZ/Zy) (3.14) 

The reduced probability distribution P(z, t) can be obtained from 

P(z, t) = dye  '~ p(z, y, O) = g(t)  P(z, O) (3.15) 
oo 

The time derivative of U(t) reads 

(J(t) = f+oo dy ~ e  t~ P1(Y) 

= - c 2 z U ( t )  - ~ v ( t )  (3.16) 

where 

f +oo V(t) = dy y2e'~ PI(Y) (3.17) 
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The generator L can be obtained from the relation 

(J(t)= LU(t)  (3.18) 

and according to Eq. (3.16) will be determined if V(t) in (3.17) is expressed 
by U(t). For this goal we adopt the method used by Haake (~7) to the 
problem of elimination of the momentum variable from the Kramers 
equation. 

Equation (3.17) can be rewritten in the form 

f 
+ o o  

V(t) = dy ye '~ y(t) P~(y) (3.19) 

where 
y( t ) = e -  '~ ye '~ (3.20) 

For simplicity, we consider the case c = -4cr although other cases can be 
treated exactly in the same manner. Using Eq. (B.9), we can write 

v ( t ) = f  +~ 
o o  

where the relation 

dy yet~[p(s t )+  (~/7) q(s t)] yP~(y) (3.21) 

..,vPI(Y) = -(~x/7) YPI(Y)  (3.22) 

has been utilized. The operators p(s t) and q(s t) are given by Eqs. (B.12) 
and (B.13). 

In the next step, we shift p(s t), q(2, t), and y in (3.21) to the left of 
the operator exp ( tS )  to obtain 

V(t) = [p(s - t), t) + (c~/7) q(2( - t), t)] 

x [p(s - t) V(t) + q(s - t) U(t)] (3.23) 

and s is given by Eq. (B.11). 
In Appendix C, we show that Eq. (3.23) leads to 

{cosh[A(s f ( t ) ]  + e-2~tA(2) sinh[A(s f ( t ) ]  } V(t) 

~ 2~ s inh[A(~) f ( t ) ]~  U(t) (3.24) 
= ~ )e  cosh[A(s f ( t ) ]  -I- A(s J 

where f ( t )  = f l ( t )  [Eq. (2.14)] and A(s is given by Eq. (B.16). To find the 
inverse of the operator 

f ( = c o s h [ A ( s 1 6 3 1 6 3  (3.25) 
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we use the Fourier transformation method for solving a linear differential 
equation. The action of )?-~ on an element g(z) of the distribution space is 
given by 

f +oo 2 ~ g(z) = dx W ( z -  x, t) g(x) (3.26) 
- - o o  

where 

lf+  
W(z, t)= ~ _ de) 

o o  

co  - -  i c o z  

cos[A(ico) f ( t ) ]  - e 2=~A(ico) sin[A(ico) f ( t ) ]  

From Eq. (3.16), it follows that 

Ot P(z, t) = -cs t) -izs P(z, O) 

(3.27) 

(3.28) 

Using Eqs. (3.24) and (3.26) and properties of the Fourier transforms, one 
find that Eq. (3.28) becomes (c=  -4c~,/~ = 1) 

O p(z, t)=4ctf-~zp(z, t)_~r2c3 f+~ Ot T ~ dx 13(z - x, t) P(x, t) (3.29) 
- - o o  

where B(z, t) is the Fourier transform 

1 f + ~  
B(z, t) =~-~ de) e -'~= ~(co, t) (3.30) 

c o  

of the function 

~(co, t)= sin[A(ico)f(t)] + e 2~'A(i~o) cos[A(i~o)f(t)] (3.3l) 
A(i~o){cos[A(ico) f ( t ) ]  - e 2~'A(ie)) sin[A(ico) f ( t ) ]  } 

Equation (3.29) is the desired evolution equation for the case c = -4c~. The 
evolution equation for other cases can easily be derived from Eq. (2.3), 
assuming that the first term in the right-hand side in (3.28) should occur. It 
allows us to eliminate the dependence on z o in the time derivative of P(z, t). 
We do not present this equation because it has the same structure as 
Eq. (3.29) and all the main properties of the equation can be discussed on 
the example of Eq. (3.29). 

Equation (3.29) has a quite different structure than Eq. (3.4). While 
Eq. (3.4) has the structure characteristic for "non-Markovian"-type 
equations 

0 
t )  - [' (.-.)/'(z, ~) ?7 P(z, & 

J0 
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Eq. (3.29) has the structure characteristic for "master"-type equations: 

a P(z, 0 [- -] ~'(x, t) dx 
c~t _~ 

Equation (3.29) is useful for a few reasons: 

(i) All expressions in (3.29) are well-determined. 

(ii) Equation (3.29) can be solved explicitly. 

(iii) The generator L can be given explicitly. 

Let us consider point (ii). From (3.29) it follows that the characteristic 
function C(co, t) obeys the following partial equation 

L 0{0" 2 

C(co, t) = -4c~o) C(eo, t) + i--z- co~(o), t) C(co, t) (3.32) 
at 2 

This equation can easily be solved by the usual method of characteristics. 
The solution of (3.32) with the initial condition C(co, t = 0 ) =  exp(icOzo) is 
given by Eq. (5.1) in Ref. 12. 

Let us consider point (iii). Utilizing the property of the commutativity 
of convolution in (3.29) and introducing the shift operator 

TxP(z , t )=P(z-x , t )=exp(-x  f--~)P(z,t) (3.33) 

This is the next important and useful result. 
Now, the equation that governs the time evolution of the probability 

function can be written as a Kramers-Moyal  type equation (~8; 

a P(z, t) ~ On K.(z, t) P(z, t) 
a t  = X 1= 

where 

The coefficient K1 does not 
depend on coordinate z. 

(3.55) 

c~cr2i n 1 c~n-1 t) o~=o 
K.(z, t)=4~za.,, 2(-Tx--ff! a-L -7--1 ~(~'  (3.36) 

depend on time t and Kn, n~>2, does not 

we obtain (3.3) with 

g--gct~z-~-~-- 7 dx ~(x, t )exp - x ~  (3.34) 
oo 
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4. DIFFUSION-TYPE APPROXIMATION (c=  - a )  

By the diffusion-type equation we mean a second-order differential 
equation generated by the Fokker-Planck operator Lvp with defined drift 
and diffusion coefficients. The Fokker-Planck generator Lvp can be 
directly obtained from Eq. (3.35) by a truncation of the Kramers-Moyal- 
type expansion and keeping the first two terms Kl(Z) and K2(t) 
[Eq. (3.36)]. From (3.31) we calculate 

B(co, t ) ]~=o= 1 (4.1) 

a~(co,am t) ~o=0__ i_~ ( 1 _e_6~,) (4.2) 

and the Fokker-Planck generator becomes 

0_ (~a2 4~z ~ 1D2 t (~2 
Lvp=-cgz \  2 / + ~  ( ) ~  (4.3) 

where the diffusion coefficient D(t) reads 

D ( t )  = o ' 2 [ ( o r  - e 6 ~ t ) ] 1 / 2  (4.4) 

On the other hand, the operator (4.3) is the generator of the diffusion 
process x, defined by the stochastic differential 

dx, = (�89 2 - 4c~x,) dt + D(t) dW, (4.5) 

which may be treated as an approximate version of Eq. (2.1) (if this 
approximation is correct). Now, we will investigate the correctness of the 
approximation (4.3). The solution of the equation 

-~ Po(z, t) = Lvp Po(z, t) (4.6) 

has a Gaussian form 

Po(z, t) = (21rq~,)-1/2 exp[ - (z - fl,)2/2(p,] 

where 

fit --= ZO e-4~t  q- gG2(  1 - -  e-4~ 

is the mean value of the process (4.5) and 

qo, = (~r4/48)(1 - 4e-6~'+ 3e-8~') 

(4.7) 

(4.8) 

(4.9) 
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describes fluctuations. It is interesting that expressions (4.8) and (4.9) have 
the same forms as Eqs. (6.1) and (6.2) in Ref. 12. This means that the dif- 
fusion-type approximation (4.3) does not destroy the main characteristics 
of the starting process (more precisely, the first two moments) for any time 
t and in this sense the approximation (4.3) leads to correct results. (4) But 
for many interesting problems one is interested in another properties of the 
process under consideration, such as the symmetry of the probability den- 
sity, or the most probable path and its evolution (as in the problem of 
noise-induced stabilization or destabilization). Our model permits us to 
compare the exact (2.13) and approximate (4.7) solutions. The 
approximate generator (4.3) is obtained from the exact one (3.34) by a 
truncation of the shift operator (3.33) to the form 

Tx "~ 1 - x # /#z  (4.10) 

What is the domain of validity of (4.10)? This is a problem for which in 
general a sufficient criterion is difficult to establish. Many authors maintain 
that (4.3) and in consequence (4.10) are valid for small fluctuations of the 
noise, i.e., if a2< 1. In Figs. 5 and 6 we show graph of the exact and 
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Fig. 5. Stat ionary density for /z : 1, c = -4c(, and a 2=  0.4. (a) The exact distr ibut ion; (b) 
"approx imate"  distr ibut ion obtained from the diffusion-type equat ion (4.6). 
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Fig. 6. Same as Fig, 5, but with a 2 =  12. 

"approximate" distribution functions P(z, t) and Po(z, t), respectively, for 
small fluctuations, ~2 < t (Fig. 5) and for large fluctuations, ~r 2 > 1 (Fig. 6). 
A comparison of these two solutions leads to the following conclusions: 

A. Po(z, t) is a symmetrical function of z - / ? , ,  while P(z, t) is asym- 
metrical. 

B. There exists a domain of (z, t) where P(z, t ) - 0  [see (2.i2)], 
while Po(z, t) does not disappear for all (z, t). 

C. The positions and values of the maxima of P(z, t) and Po(z, t) are 
different. 

In the above sense, the approximation (4.3) leads to unsatisfactory 
results. 

822/47/3,4-15 
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A general conclusion from A-C is obvious: 
approximation is incorrect for the problem considered! 

Luczka 

The Fokker-Planck 

5. S U M M A R Y  

The main results can be summarized as follows (see also Refs. 11 
and 12): 

1. The process z~ in (2.1) is ergodic, and the probability distribution 
P(z, t) is asymmetrical and disappears for a certain domain of (z, t). 

2. The white noise limit exists for the probability distribution of the 
process zt in Eq. (2.1). In this limit P(z, t) coincides with the stationary 
density Pst(z). 

3. The master equation for P(z, t) has been derived and given in 
analytical closed form. This equation is solvable (integrable). 

4. P(z, t) obeys a Kramers-Moyal-type equation with explicitly 
determined coefficients. 

5. Two methods for solving the starting problem (2.1) have been 
described: the curtailed characteristic functional approach ~11) and the 
procedure of noise variable elimination. There is a third method for solving 
(2.1), based on the semigroup techniqueJ 19) 

6. A comparison of the exact distribution with one obtained from the 
approximate diffusion-type equation has been carried out. The first two 
moments obtained from the averaging over P(z, t) and over Po(z, t) 
coincide for all time and for all values of the parameters, but the other 
properties of P(z, t) are destroyed by the diffusion-type approximation. 

There is a question: Under what conditions is it possible to pass from 
the exact generator (3.34) to the generator (4.3) of the diffusion process 
(see Ref. 20 and references cited therein)? Many approximate methods are 
based on the expansion of interesting expressions with respect to a small 
parameter. In our expansion (4.10) one has no parameter at all. The 
problem is more subtle from the mathematical viewpoint. In fact, Eq. (3.35) 
is a partial differential equation with an infinite number of differential 
operators of any order. The situation may be similar to that in the theory 
of functional equations with bounded and unbounded delays. ~2~'14) In the 
case of unbounded delay, even the definition of the phase space is very 
complicated and has been constructed in the last decade. r For 
mathematicians, the better starting equation is Eq. (3.29) and it may be 
that an approximation technique should be applied to the kernel B(z, t) 
[Eq. (3.30)] of the integrodifferential eqmation (3.29). 
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A P P E N D I X  A 

The functions A3(co, t) and B3(co , l) in Eq. (2.24) have the form 

A3(CO , t) = FI(/) co ~ cos ~ -Jr- F2(CO , t) sin 

+ F3(co, t)cos x /~  tank ~ + 6 ~ sin ~ tank x /~  

B3(co, t )=  Fl(t)co ~ sin ~ tank 

where 

(A.1) 

- F2( co, t ) cos ,,/-~ tanh xf-~ + F3(co, t ) sin ,~-~ - 6 ,,/-~ cos x/--~ 

(A.2) 

F1( t )=4g( t ) /5 f~( t )  

2h(t) 4p(t) co2 F2(co, t) = ~ co - ~ - 3 

2h(t) . 4p(t) co2 g3(o, / )  = ~  co + ~ +3  

and f3(t) is given by Eq. (2.25) and 

g(t) = e 4~'/s(6- e 2~,/5) 

h(t) = e 2~t/5(15- 6e 2~,/5) 

p(t) = e  -6~t/5 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

APPENDIX B 

In Eq. (3.19) we need the quantity (3.20). Let 

f~( t ) = e - t ~  .9e,~ 

and 

(B.1) 

2 ( t ) = e - ~ s  'S  (B.2) 

with 5 ~ from (3.11) and f and ~ defined by (3.12). 
The closed system 

reads 
of differential equations for y(t), f~(t), and s 

~( t )= - ~ y ( t ) - - 2 7 ~ ( t )  

~ ( t ) = @ ( t ) - 2 # y ( t ) 2 ( t )  

~(t)= --c2(t) 

(B.3) 

(B.4) 

(~.5) 
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The Mar t in -Rose-Siggia  equat ions (16) (B.3)-(B.5) for our  problem can be 
solved exactly. We have 

s = e  c,2 (B.6) 

Differentiation with respect to t of  Eq. (B.3) and utilization of Eq. (B.4) 
with (B.6) leads to 

fi(t) - ( 4 # y e e - a +  c~2) y ( t )  = 0 (B.7) 

The solution of Eq. (B.7) can be expressed by (22) 

y(t)=Z2~/c(4@(y#~)V2e -a/2) (B.8) 

where Zv stands for any solution of the Bessel equation. In the case 
c = -4c~ considered in Section 3.2, we obtain the following solution (# = 1 ): 

y ( t )  = p(s t) y - q(~, t) f~ (B.9) 

)3(t) = r(s t) )3 - s(2, t) y (B.10) 

2(t) = e4~t z (B.11 ) 

where 

and 

p(s t) = e ~' co sh[A( s  2~ ' -  1)] 

q(s t) = 7_ e o, s inh[  A(s  e2~t - 1 )] 
A(~) 

r(2, t) = e at cosh[A(2)(e  2:~- 1)] 

s(2, t) =~- e~ A(~)  sinh[-A(2)(e 2~ ' -  1)] 
7 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

Equat ions  (B.12) (B.15) 
differential operators  

A2(s = (7/~2)s = �89163 (B.16) 

are in fact the well-defined power series of the 

APPENDIX C 

Equat ion  (3.23) can be rewritten in the form 

[1 - D ( s 1 6 3  t ) ]  V(t)  = D(s q(s -- t) U(t)  (cA) 
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where 

D ( Y , t )  = p ( s  - t ) , t )  + ( ~ / 7 ) q ( g (  - t) ,  t )  

From (B.11)-(B.13) it follows that Eq. (C1) takes the form 

~(~, t) ~1(~, t) = ~(e, t) g2(~,t) 

where 

I~(~, t) = sinh[A(s - e 2~')]/A(s 
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(C.2) 

(C.3) 

(c.4) 

$1(2, t) and $2(~, t) are the left- and right-hand sides of Eq. (3.24), respec- 
tively. 

From (C.3) it follows that $1(s t )=  $2(~, t), since the operator Y(s t) 
in (C.4) contains a term independent of the operator 2=~/0z. Hence 
Eq. (3.24) holds. 
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